
Kaluza-Klein Quantum Fields on the
Lattice

James Hackett

Abstract

The ultimate aim of this project is to develop a parallel algorithm that creates a picture of the
interaction between a five dimensional field and a purely four dimensional field of similar character.
The motivation behind the simulation comes from Kaluza-Klein theory, which was originally used
to encompass the four dimensional theories of general relativity and electromagnetism in a concise
five dimensional theory. My thesis is a precursory venture into the world of the quantum lattice.
Hence, it’s secondary aim is to explore the most basic quantum lattice objects, in order to ensure
the accuracy of the final simulations and to come to better understanding of the underlying physics.
The simulations begin with a one dimensional free quantum field, and move on to higher dimensions
and interacting fields, before the Kaluza-Klein based model. All simulations involve measuring the
two-point correlation function on a lattice, and conclusions are derived from it’s alteration as the
nature of the field is changed. The main conclusion is therefore an interpretation of the differences
between the correlation function for two interacting fields of the same dimension and the correlation
function for the Kaluza-Klein interaction, giving us an example of how the theory should affect
experiment.

Contents

1 Introduction 2
1.1 Introduction to Concepts . 2

1.1.1 Kaluza-Klein Theory . 2
1.1.2 Path Integrals in Quantum Mechanics . 4

1.2 Scalar QFT . 5
1.2.1 The Action associated with Free Fields . 5
1.2.2 Discretising the Action for Numerical Computation 6

1.3 Using the Action to calculate the Amplitude . 7
1.4 Distributing the Field across the Lattice . 8

1.4.1 Importance Sampling . 8
1.4.2 Markov Chains . 9

2 Code Design 11
2.1 Basic Serial Code . 11

2.1.1 main.c . 12
2.1.2 get args.c . 12
2.1.3 fielddist.c . 12
2.1.4 update.c . 14
2.1.5 showdist.c . 14

2.2 Adaptation for Various Dimensions . 15
2.2.1 s.c . 15
2.2.2 correlate.c . 17

2.3 Adaptation for Interacting Fields . 18
2.4 Parallel Adaptation . 19
2.5 Kaluza-Klein Code . 20
2.6 Software Testing . 21

3 Profiling and Parallel Performance 23
3.1 Serial Performance . 23
3.2 Parallel Performance . 25

4 Results 27
4.1 Free Scalar Field Theory . 27
4.2 Interacting Fields . 29
4.3 Kaluza-Klein Interaction . 32

5 Conclusions 34

A Derivations of Formulae 36
A.1 Free Field Equation . 36
A.2 One Dimensional Correlation Function . 36

B Normal Gaussian Distribution 38

1

Chapter 1

Introduction

1.1 Introduction to Concepts

1.1.1 Kaluza-Klein Theory

Kaluza-Klein Theory merges the theory of electromagnetism and the theory of gravity into one
theory by introducing a fifth dimension to our world. In General Relativity, gravity is described
over four dimensional space-time, as is electromagnetism in Maxwell’s theory. The equations from
which all motion is derived for both fundamental forces can be described in tensor form in both
cases, respectively:

Gαβ = 8πGφ2Tαβ and ∂aFαβ = Jβ , (1.1)

where Gαβ is the Einstein Tensor, TEMαβ is the electromagnetic energy-momentum tensor, Fαβ is the

field strength (Faraday) tensor and Jβ is the four dimensional current.
These equations describe the way the fields change over space-time by relating the energy of the

field to the density of its matter (Electromagnetic matter is represented by charge, and gravitational
by mass.) and this requires the highest order derivatives of motion. To find how matter accelerates
through a field, we apply integration to the field equations. In general relativity, this involves a
double integral to find the metric tensor, but note that this metric replaces the gravitational force
in Newton’s theory of gravity. In other words, general relativity explains acceleration due to gravity
as a consequence of the curvature of space, rather than as a force in the intuitive sense. The metric
tensor describes the local curvature of space by stressing certain co-ordinates differently to others.
The co-ordinates describe position, and so, giving one co-ordinate more weight than another will pull
space in the direction along which the weighted co-ordinate is measured. This has the same effect as
an attractive force, causing acceleration. In electromagnetism, the electromagnetic potential effects
how a charged body moves. In the most basic physics explanation, force is the rate at which work
(energy) is carried out in space (sort of like energy density), or alternatively, energy is the the amount
of force expended over a particular space. Potential energy represents the amount of force required
to change position, and so the force due to a field is given by the gradient of the potential. Force is
that which causes acceleration of matter, and since Maxwell’s equations involve second derivatives
of electric and magnetic potential, their integral provides the nature of acceleration due to the field.

Neither of these theories contain any mention of the other, so Kaluza’s idea was that if there
is a link between them, they must both be derived from some higher theory. Simply adding the
two tensors equations together is not a solution, since motion is described in a different way in
both theories. we have just seen that acceleration is found via a double integral of Einstein’s
equations, whereas it involves the first integral of Maxwell’s equations. Certainly if we simply wish
to discover the net force resulting from both, we could then add the Maxwell equations to the
equations of motion derived from the metric (in turn derived from the Einstein equations), and
could subsequently find an formula describing the position of a body influenced by both forces.
However, in this case the forces come from completely separate theories, despite the fact that they

2

interact with the same object. This is like describing two people playing tug-of-war, showing how
the rope reacts to both people without explaining their common genetic origin. we are searching
for a higher understanding of gravity and electromagnetism, not simply for a description of their
interactive behavior. Kaluza’s solution was then to create a structure which encompassed both
theories separately, but which described a relationship between both, just as Maxwell managed with
electricity and magnetism. In order to achieve this, since we have already noted the completeness of
both four-dimensional theories, a five-dimensional structure was suggested [1]. In four dimensions,
the gravitational potential (Einstein’s metric) defines how space is curved, so it was suggested that
distances in the fifth dimension can be similarly defined by the electromagnetic potential. The five
dimensional metric is thus constructed of the original gravitational metric and the electromagnetic
potential as follows:

(ĝAB) =

(

gαβ + κ2φ2AαAβ κφ2Aα
κφ2Aβ φ2

)

This is the new five-dimensional metric tensor, where A,B, the latin indices, include all five dimen-
sions, and alpha, beta, the greek indices, only include rhe four dimensions of the initial field theory.
The term, κ, is just a constant to scale the forces appropriately. φ is a scalar field (known as the
dilaton) and A represents the electromagnetic potential.

The trouble is that we haven’t observed such a metric in everyday life. we normally only observe
the effects of three dimensions of space and one of time. Kaluza proposed that the fifth dimension
was too small to be seen, in the way a hose pipe looks like a line when viewed from afar. When
one moves closer, it becomes apparent that it is three-dimensional. If we imagine that the hose is
actually two-dimensional when viewed close up, and that it’s cylindrical shape is just a result of
the second dimension being circular in shape, we are getting close to the original picture proposed
concerning our fifth dimension. When we try to derive the field equations from the metric above,
applying the cylinder condition to our calculations is the same as saying that motion in the fifth
dimension vanishes, since the fifth dimension is so short. So all derivatives in that direction go to
zero, and the resulting four dimensional field equations are [1]:

Gαβ =
κ2φ2

2
TEαβM −

1

φ
[∇α(∂βφ)− gαβ2φ] , (1.2)

∇αFαβ = −3
∂αφ

φ
Fαβ , 2φ =

κ2φ3

4
FαβF

αβ , (1.3)

Holding the scalar field φ constant results in equations 1.1, and hence we have a theory which merges
electromagnetism and gravity.

Although Kaluza-Klein theory originally described only the idea of representing the Maxwell
and Einstein equations in one tensor, it is often liberally used as an umbrella term for any higher
dimensional physical theory, including modern day string-theory. Applying the name to my project
is therefore not strictly correct, but is useful for the purpose of understanding the nature of the fifth
dimension in my simulations. Among the mass of attempts to explain our universe through higher
dimensional structures is the idea of the brane. The brane is a four dimensional “membrane” that
exists within a higher dimensional universe known as the bulk. The human residents of the brane
do not see what happens in the greater bulk, but postulate its existence as a necessary structure
to explain events in their visible four dimensional world. Thus, the bulk is similar to the fifth
electromagnetic dimension proposed by Kaluza and Klein.

A picture has been developed in cosmology where only gravity propagates the fifth dimension.
The idea is that the extra gravitational dimension exerts tension on the brane which alters its
curvature, similar to the way one might exert tension on a two dimensional flat piece of paper. If
one holds the paper on two opposite sides and moves one’s hands closer together (as though they
were experiencing an attractive force) the paper will have to bend. On the quantum level, the
particles (quantum fields) which propagate gravity are gravitons. The picture created in this thesis
is of two interacting quantum fields, where only one of them propagates the fifth dimension, and it
is interesting to see the quantum effects of this coupling.

3

1.1.2 Path Integrals in Quantum Mechanics

The path integral in quantum mechanics is based on the undeterministic nature of particle prop-
agation. In classical mechanics, it is always safe to assume that a body will tavell along the path
which requires the least work. This path is defined by the energy of the body, any external source
affecting it, and their relative positions (defined in space-time/phase space). A quantum field or
particle is also dependent on such conditions, but the difference at the quantum level is that such
parameters can only describe paths which have a certain probability of being followed.

Since nothing is completely determined, we cannot say with certainty that a particle will move
from point A to point B. Instead it may move to point C. From this uncertainty, we can see that there
are a number of paths along which a particle can move from A to B. For example, once the particle
has arrived at point C, there is now a certain probability that it will move to point B from point C.
Thus we have two possible paths, given three points. To find the probability that the particle will
travel from A to B via C, we just use basic probability theory. ie. Multiply the probability that it
goes from A to C by the probability that it moves from C to B.

Now it is pointless in such a space as that described above to ask ourselves what the probability
of the particle ever existing in B is, given that it once existed at A. If we evaluate this probability
over an infinite time period, the normalised probability will be 1 (100%). What we are interested
in is the probability that the particle moves from one point to another within a particular length of
time. The superposition principle tells us that the amplitude for the particle to reach point B within
a certain time is the sum of the amplitudes of all the paths it could possibly take. Now realise that
there are an infinite number of points in the region around A and B, and that adjacent points are
infinitesimally close together. In such a situation we know to represent the sum as an integral. Thus
the amplitude for a particle to propagate from A to B is given by integrating over all possible paths,
giving us a path integral.

In order to be able to calculate this path integral, we have to be able to describe a general form
for each path. Just as in classical mechanics, we should assume that the energy of the particle is
important, since this describes the work done by the particle as it interacts and moves. A particle
may not have much chance of reaching some points within a certain time, depending on its kinetic
energy, which reduces the probability for that path. With this in mind, the most likely path will
be the one which extremises the Lagrangian at each point along the path. This indicates that the
action should be involved in describing the probability of any particular path.

Now, remembering that a particle propagates as a wave, according to the Schrödinger and Klein-
Gordon equations, for example) the total amplitude for a particle to move from A to B in time T
must be expressed as:

U(xA, xB ;T) =

∫

Dx(t) ei(phase), (1.4)

where
∫

Dx(t) means sum over all paths.
As we said before, the phase of the most likely path will involve extremising the action, and

the phase of any other path will differ in phase by some constant (as in any wave equation, phase
difference is a constant), so a good guess at the solution is:

U(xA, xB ;T) =

∫

Dx(t)eiS[x(t)], (1.5)

where S =
∫

L dt is the action. This turns out to be the correct formula, since it gives the correct
solution to known problems [4], p.277.

In order to use this formula, we would like to know what the action is for different paths. So
how does the action depend on the path chosen by a particle? A good way to see this is to break
each path up into tiny intervals, so that the path in each interval can be approximated as a straight
line. ie S =

∫

L dt→ S =
∑

k lk ε, where ε = δt
Now that the path has been discretised, the total amplitude for each path can be given as the

product of the amplitudes for each interval along the path, just as it was in the three point example,
U(A,B; T) = U(A,C; T ′) × U(C,B; T ′′), where T’ + T” = T. See, [3] for an simple explanation
of the amplitude between A and B in a continuously infinite space. The amplitude U(A,B;T) is

4

given by
〈

B
∣

∣eiHT
∣

∣A
〉

, so the propagator at each interval is given by
〈

qk+1

∣

∣eiHε
∣

∣ qk
〉

, and the total

amplitude is given by Πk

〈

qk+1

∣

∣eiHε
∣

∣ qk
〉

, multiplying probabilities as usual (The amplitude may
be described as the square of the probability.). We can describe the Hamiltonian for each interval
as H(qk+1+qk

2 , pk) since it depends on position and momentum, and the positions can be estimated
as the average over a straight line between qk and qk+1 (remembering that the intervals are tiny).

Remembering from classical mechanics that the Lagrangian can be written as L =
∑

i,j pi, qj−H,
we can represent the propagator at any particular time integral as:

〈

qk+1

∣

∣e−iεH
∣

∣ qk
〉

= (Πi

∫

dpik
2π

)e[i
∑

i
pi

k(qi
k+1−q

i
k)−iεH(

qk+1+qk

2
,pk)] (1.6)

and multiplying the amplitude for each interval together, we get

U(q0, qN ;T) = (Πi

∫

dqik

∫

dpik
2π

)e
[i
∑

k

(
∑

i
pi

k(qi
k+1−q

i
k)−iεH(

qk+1+qk

2
,pk)
)

]
(1.7)

For a derivation of the above formula, see [4], pp. 280, 281 in particular.

1.2 Scalar QFT

1.2.1 The Action associated with Free Fields

In the section on path integrals we gave a general form for the two point correlation function in a
system of co-ordinates and momenta. In the process, we demonstrated that in order to calculate this
amplitude (via the path integral method) in a specific case, one has to know exactly what the action
looks like for that situation. The action is of course linked to the Lagrangian, which is constructed
from the kinetic and potential energy of the system. My initial simulations involve a single field φ,
which has has kinetic energy, 1

22φ, and potential energy, 1/22m2φ2, giving us the Lagrangian:

L =
1

2

(

2−M2
)

φ(x) (1.8)

This Lagrangian in turn gives us the field equation:
(

2 +M2
)

φ(x) = 0 (1.9)

See appendix A.1 This is simply a wave equation with mass, which is what we expect.
The Lagrangian also gives us our action:

S = −
1

2

∫

d4xφ(x)
(

2 +M2
)

φ(x) (1.10)

Unfortunately the path integral of eiS oscillates and does not converge, but does converge if we do
the integral over imaginary time. This involves a wick rotation, which is equivalent to rotating ninety
degrees into the imaginary plane. From this vantage the action becomes Euclidean, and although
this is different from the action 1.10 above, the contour integral over infinity has the same value
in both spaces. The wick rotation involves making the replacement x0 → −ix4 and substituting a
real field (where all dimensions are treated the same) for the original complex one. See Peskin and
Schroeder section 9.3 pg 293 for a relevant example of this rotation. Here is the Euclidean action:

SE [φ] =
1

2

∫

d4xφ(x)
(

−2E +M2
)

φ(x) (1.11)

where all values in the 4 dimensional Laplacian now have the same sign. ie:

2E =

4
∑

µ=1

∂µ∂µ (1.12)

Working in imaginary time also changes the form of the probability wave for particle propagation
to e−SE [φ]. The two-point correlation function (my holy grail) will be evaluated with this in mind
in section 1.3.

5

1.2.2 Discretising the Action for Numerical Computation

Since the action 1.11 is continuous, it is impossible to use on a discrete information processor such
as the computer we are using to produce simulations. The next step is to derive an equivalent action
made up of discrete points. These points would be laid out on a lattice which looks so similar to
the continuous surface we are examining, that there is no apparent difference. Of course, this means
the points on the lattice must be so tight-knit that it looks like like a continuous surface. The test
of whether the discrete action is equivalent to the continuous one is to imagine the lattice spacing
getting smaller and smaller, so that as the spacing approaches zero, the discrete action becomes the
continuous one.

To discretise the d’Alambertian (2), we use Taylor expansions, the usual method for discretizing
differential equations.

φ(n+ µ̂) = φ(n) + a∂µφ|n +
a2

2
∂2
µφ|n (1.13)

φ(n− µ̂) = φ(n)− a∂µφ|n +
a2

2
∂2
µφ|n (1.14)

The constant, a, is the lattice spacing, which is the same as (n + µ̂) − n in the Taylor expansion.
Adding 1.13 and 1.14 together gives the second derivative of φ (at a particular point, n, on the
lattice) completely in terms of the values of the field at and directly surrounding that point. A
simple addition and manipulation is all that is needed to give us:

a2∂µφ|n = φ(n+ µ̂) + φ(n− µ̂)− 2φ(n) (1.15)

Remembering the definition of 2E as the sum of partial derivatives over all dimensions (1.12), we
can extend this definition for a d dimensional Laplacian. Written as an operator between φn and
φn′ , and taking the a2 term out, it looks like this:

2n,n′ =
∑

µ

(δn+µ̂ + δn−µ̂ − 2δn,n′) (1.16)

where µ represents any dimensional direction and δ is the Dirac delta function.
We are almost ready to decide on the form of our discrete action, but there remains one problem.

Because we are using a lattice to approximate a continuous surface, the choice of lattice spacing is
arbitrary, so long as it is small enough to represent the surface accurately. we want the results to be
independent of the lattice spacing, which means that we have to deal with dimensionless quantities
only. In other words, if the quantities are dimensionless, they don’t depend on a length scale such
as lattice spacing. What we are looking for is some sort of discrete sum in place of a continuous
integral, and the sum must be made up purely of dimensionless parts. A possible solution would
therefore be:

1

2

∫

d4xφ(x)
(

−2E +M2
)

φ(x)→
1

2

∑

nn′

φ̂n

(

−
1

µ
2nn′ + µδnn′

)

φ̂n′ (1.17)

Here, µ is some dimensionless co-efficient that we anticipate may enter our equations. The arrange-
ment of co-efficients is slightly arbitrary, so we have chosen one which involves the using the same
co-efficient on the kinetic (2) element as with the potential (δ) element of the equation. From 1.18
below we can see that the constant multiplying the potential term is a2m2 times the kinetic constant,
so we can try µ = am. This works perfectly because we know that mass has dimensions of inverse
length, meaning that µ = am is a dimensionless quantity.

We start discretising by changing the continuous d’Alambertian for the lattice one (1.16) in
formula 1.11. Note that since we took the 1/a2 term out of this operator, 2, it must appear in
the integral. Taking 1/a2 outside the entire integral, rather than just the d’Alembertian, means we
must cancel it out in the potential part by multiplying the mass by a2.

Slattice =
1

2a2

∫

d4xφn
(

−2n,n′ + a2m2δnn′

)

φn′ (1.18)

6

=
ad

2a2

∑

nn′

φn(−2nn′ + a2m2δnn′)φn′ →
1

2

∑

nn′

φ̂n

(

−
1

µ
2nn′ + µδnn′

)

φ̂n′ (1.19)

The ad term is the result of
∫

ddx → ad
∑

(d is the number of dimensions of the field). As we
know, lengths (d = 1) are measured in meters (Standard International), areas (d = 2) are measured
in meters squared (as a result of summing over lines), volumes (d = 3) in meters cubed (as a result
of summing over 2 dimensional objects). The unit of length on the lattice is not the meter but a,
and dimensionality scales equivalently in units of a. we have equated the discrete action developed
from the continuous integral with the action we actually want (1.17), and now, rearranging factors
of a and m, substituting mu = am into the left hand side of 1.19 and canceling common terms on
both sides gives:

ad−1mφn

(

−
1

µ
2nn′ + µδnn′

)

φ′ → φ̂n

(

−
1

µ
2nn′ + µδnn′

)

φn′

⇒ ad−2µφ2 → φ̂

φ(x)→ a1− d
2 µ−1φ̂(na) (1.20)

Hence the dimensions of the field cancel out the dimensions of space and energy, leaving the action
dimensionless as required. When calculating the correlation function later, we will need to invert
1.20 in order to get back the true function.

1.3 Using the Action to calculate the Amplitude

We saw at the start of 1.2.1 that we need the action in order to calculate the two-point correlation
function, but we didn’t state what the correlation function actually looks like for general fields.
Peskin and Schroeder derive it in a section entitled “Correlation Functions”[4]. The function below
looks slightly different because we are working in Euclidean space, as mentioned at the end of section
1.2.1.

< φ(x1)φ(x2) >=

∫

Dφ (φ(x1)φ(x2))e
−SE [φ]

∫

Dφe−SE [φ]
(1.21)

Peskin and Schroeder mentions, “For higher correlation functions, just insert additional factors of φ
on both sides.”[4], but we are dealing with just two points here. Remember from the introduction to
path integrals that the probability of getting from one point to another is a product of probabilities.

It is interesting, and useful, to examine the form of 1.21 to understand what it is doing. It is
simply a statistical formula for calculating the weighted average (which is also the most probable)
value of the product of two field values at x1 and x2. The weight associated with each product
is the value e−SE [φ]. The integrals are simply continuous sums, so the formula reads as the sum
of the weighted products divided by the number of products (ie. the sum over all paths, see next
paragraph), which is a weighted average. In basic statistics, a formula which gives a weight to each
value in an ensemble describes a probability distribution. If we simply distribute all the points of
our field according to this field distribution, then the product φ(x1)φ(x2) is automatically weighted,
and our correlation function may then be calculated by this simple formula!

Notice that although we are dealing with quantum field theory, we have developed statistical
mechanics to describe it. Peskin and Schroeder describe this analogy in section 9.3. Remember
the definition given under formula 1.4 of

∫

Dx as, “the sum over all paths”. The denominator in
formula 1.21 has the term e−S added to this integral, which therefore defines the denominator as,
“the sum over all paths distributed exponentially according to the action”. This is a loose definition,
but we are developing a picture of what is going on. The number of paths between points on the
field is, as indicated in the previous paragraph, the same as the number of of products φ(x1)φ(x2),
since there is just one path for each product (each product involves only two points, which allows
for only one commutative combination, or path). Now using the analogy with statistical mechanics,
remember the description of the partition function, Z, as “the sum over all states”. The states in
the partition function of statistical mechanics are distributed according to e−βE , where E is the

7

energy, and β is the inverse temperature, but notice that our paths are also states in an ensemble of
possible amplitudes. So what we now have is that < φ(x2)φ(x1) >= Z−1

∫

Dφφ(x1)φ(x2)e
−S . In

other words, Z is a Greens Function for our correlation function.
To represent an infinite continuum of paths, we create many random field distributions on a

dense lattice and measure on each field the product φ(x1)φ(x2) at a number of random points. we
don’t want to measure every possible product on each field, simply because it takes too much time.
If each field is sufficiently different (though each must have the same distribution, e−S), we can
average over a much more diverse ensemble. This means we will get a good average quicker if we
concentrate on measuring a fair ensemble of points on a good ensemble of fields. This is related to
the Central Limit Theorum, which is also used in Markov Chain Monte-Carlo (MCMC) simulations.
In fact, since MCMC involves applying random changes to a matrix (which could be a lattice) so
that it evolves to a fixed solution, it is used in many problems of statistical mechanics. Since we
have reduced our quantum problem to a statistical one, an MCMC method is a natural choice for
us. we have chosen the Metropolis Algorithm in particular to give us a field distributed according
to e−SE [φ], from which we can calculate the correlation function by randomly choosing n points x1

and x2 a distance na apart (where a is the lattice spacing) and applying the following formula:

< φ(x2)φ(x1) >lattice=
1

n

∑

n

φ(x1)φ(x2) (1.22)

Note that n replaces Z as the sum of products. But n is obviously the sum of products as we have
changed from an infinite integral to a finite sum of n products, chosen randomly on the lattice.

1.4 Distributing the Field across the Lattice

The Metropolis Algorithm is based on two main concepts, Markov Chains and Importance Sampling.

1.4.1 Importance Sampling

Importance Sampling is a way of solving integrals by filling the volume of integration with a large
number of points. The idea is that the average value of these points will represent the center of
the volume (which is statistically valid). Each point is generated by taking an educated guess,
and then testing to see whether or not this guess falls inside the volume. The guess is “educated”
by generating points within a similar volume. The similar volume would be defined by a simpler
random distribution, so that points can be easily distributed throughout that volume. The only
other necessity is that it cannot be smaller than the volume we are trying to solve, since we don’t
want any areas of the solution to remain unfilled by points. Obviously that would lead to a false
average. The closer the approximate volume is to the actual one, the less guesses will be rejected.

Consider how one would generate points randomly inside the approximating volume. For simplic-
ity, we will deal in two dimensions, so that the volume is actually an area. Let y = g(x) represent the
curve under which the approximating area of integration lies. Also, let u(x) be a random number,
uniformly distributed between 0 and 1. Then u(x)g(x) will give us a random point, (x, u(x)g(x))
which lies under the curve, and therefore inside the approximating area. Now, in order for this
point to lie inside the actual area of integration, which lies under the curve f(x), we say that
u(x)g(x) ≤ f(x). Another way to say this is:

u(x) ≤
f(x)

g(x)
(1.23)

I referenced the Central Limit Theorum at the end of section 1.3, and this is the moment to really
see how Importance Sampling is tailor-made for solving our Correlation Function in it’s statistical
form. In order to produce a good average result, the algorithm just described must be run a number
of times, so that we obtain an average of averages. Each time, we fill the area under the curve with
points, find the average value, add it to the sum of averages, and finally divide that sum by the
number of times the algorithm is run. This is almost exactly what we said we would do at the end

8

of section 1.3. Importance Sampling is incomplete without this cycle. In our case, we want to find
the average product of points, not the average point, but this just means we calculate φ(x1)φ(x2)
each time, instead of just φ(x). Once we have generated enough points, we can use Importance
Sampling to give us the average value of any function of the points, which could be represented
mathematically as:

∫

f(x) dx
∫

dx
(1.24)

Notice the similarity with formula 1.21. In order for 1.24 to be equivalent to 1.21 in the same way
that 1.22 is, it must be measured over a lattice of points distributed according to e−SE(φ). This is
where Markov Chains are relevant.

1.4.2 Markov Chains

A Markov Chain consists of chain of states, where the state of each link in the chain is found by
multiplying the state of the previous state by some operator. To be specific, each link has a certain
probability of being in each possible state, and this probability is found by multiplying the states of
a previous link by a probability matrix. This is still a little abstract, so we will use an example that
is particularly relevant.

Let each link in the chain represent a specific day I spend on my thesis, so that the first link
is today, the next represents the day afterwards, and so on. Now each link in the chain has two
possibilities. Either the project is finished and handed up, or it is not. Now if the project is finished
one day, it will be finished the next day too. Let’s assume for simplicity’s sake that if the project
is not finished today, there is still a 10% chance it will be finished tomorrow, and this rule holds
every day. Today, the project is not finished, so todays state may be represented as (1, 0)T , where
the first row represents an unfinished state, and the second, finished. The probability I am finished
tomorrow is then 10%, and the probability that I am still not finished is 90%, giving the next day, or
link, the following state: (0.9, 0.1)T . Now if the 10% chance of finishing works out, this means I will
be finished the next day, so means I automatically have a 10% chance of finishing on day 3, based
on row 2 of day 2. However, it is more likely that the 90% chance of not being finished on day 2 is
what actually happens. But there is a 10% of that 90% possibility that I will be finished on day 3,
and this adds 9% to the 10% chance I already have of finishing on day 3. This means that row 2 of
day 3 has the value, 0.19. This sounds much simpler if I just say: To find row 2 of tomorrow’s state,
multiply today’s row 1 by 0.1, today’s row 2 by 1, and add. And to find row 1 of tomorrow’s state,
multiply row 1 by 0.9, and row 2 by 0 (since if I am finished today there is a 0% chance of finishing
tomorrow, and if I am not finished, there is a 90% chance I will remain unfinished tomorrow). This
is described in matrix notation as:

(

0.9 0
0.1 1

)

=

(

φ1

φ2

)

,

where φ1 represents an unfinished state and φ2 represents a finished state.
With the chain we have described above, there is always a tiny possibility that I will not be

finished, although this gets smaller and smaller with time. However, there are many Markov Chains
that reach some fixed equilibrium state, and these are known as “ergodic”. In other words, the
probable states of each link in the chain remains the same after a certain number of links are passed,
no matter where we start from. These are the chains used in the Metropolis Algorithm. Chains which
reach a fixed state can be constructed using something called “detailed balance”, which we will not
explain here, for fear of getting too sidetracked. Not all chains which have fixed points have to obey
detailed balance, but the reverse statement is true: All chains obeying detailed balance have fixed
points. we know by this stage that we want our lattice to evolve to a fixed distribution, e−SE(φ), and
so we want an algorithm to generate this state. The Metropolis algorithm obeys detailed balance,
and deals with our problem nicely, as we will see from it’s description below. In our case, the state of
the system is represented by an n-dimensional lattice, rather than the vector in my simple example
above, and the probabilities become field values on the lattice. The original state of the field can be

9

given any random values, since the fixed state is reached regardless of where we start from. Now we
find each consecutive state as follows:

Metropolis Algorithm:
1. Propose a small change to the field, φ→ φ′ (The Metropolis Algorithm stipulates that the change
must be area-preserving). This change can be reversed by applying the conjugate of the change we
made (The algorithm also demands that the proposal must be reversible).
2. Accept the probability based on the probability:

Pacceptance = min

[

1,
π(φ′)

π(φ)

]

, (1.25)

where π(φ) is the state of the field.
Otherwise, keep the old field.

3. Repeat until the field achieves a fixed state.
The term π(φ′)/π(φ) in step 2 of the Metropolis Algorithm is actually just Importance Sampling,
since to accept the new field with this probability, we compare it with a uniform random variate,
u(x). If u(x) falls below π(φ′)/π(φ), the field is accepted, otherwise not. This is just equation 1.23.
Our lattice represents a volume of n dimensions, and we are simply filling it with points in the way
mentioned in subsection 1.4.1 until, because of the detailed balance introduced by equation 1.25, it
reaches a fixed state. Bringing all the maths together we have:

π(φ′)

π(φ)
=
f(x)

g(x)
=
e−S(φ′)

e−S(φ)
= eS(φ)−S(φ′) (1.26)

Substituting this into 1.25 generates the distribution we want, and since our algorithm is an impor-
tance sampling one, we can calculate equation 1.22.

In conclusion, we run the Metropolis Algorithm above, using 1.26 as the probability of accepting
an update. When after a number of iterations, this achieves the desired distribution, we measure
1.22 over a number of points. To get a better result, we run the Metropolis Algorithm again to give
a different field with the same fixed distribution, and measure 1.22 again in the same way. This is
done again and again to achieve a large ensemble of fields, to produce a good average by the Central
Limit Theorum.

10

Chapter 2

Code Design

Common sense tells us to design our code in a patient, methodical way, not jumping in at the deep
end, but rather testing our abilities first on shallower challenges. With this in mind, we begin writing
code for a non-interacting one dimensional field with only potential energy, and add the kinetic term
afterward. We repeat this method for two, three four and five dimensions, then write parallel free
field code and simultaneously, serial code for interacting fields. Finally we bring these latter two
together to form the Kaluza-Klein simulation, having tested my code before moving on at every
stage. Since the parallel code is actually serial code running in parallel on a number of processors,
it makes sense to follow the same order in describing the code as we do in writing it.

2.1 Basic Serial Code

The skeleton of my code is comprised of the few simple steps of the Metropolis Algorithm (1.25),
with extra steps for representing the data.

1. Initialise variables, such as lattice spacing, an amount by which to alter the field at each
metropolis update step (1.25), the sizes for the various loops involved in later calculations and the
number of points in the field (command line argument). Also calculate any other common variables
which depend on any of the above.

2. Allocate space to hold points, and fill this space with random values. In our case, the points
represent the value of the field at some position on a lattice. The positions of the points are unrelated
to the value of the field at this stage however, since they hold randomly generated values. Hence this
first step is nothing more than a simple “for” loop to give random values to some memory allocated
using the malloc command.

3. Distribute the points throughout some volume. In our case this is the volume described by
the distribution, e−S . This step has a higher complexity. It involves a loop which runs step 2 of the
Metropolis Algorithm (1.25) as many times as necessary before the required field is produced.

4. Analyse the field to generate a graph of it’s distribution. This step tells us if step 2 has been
successful.

5. The most complex step, using the bulk of processor time, this involves calculating equation
1.22. We measure φ(x1)φ(x2) for a number of distances r = x2−x1, picking a number of positions x1

at random, and choosing random directions to look for x2, a distance r away. We find the average of
these points for each distance r. We then update the field until it is significantly different, although
the distribution obviously remains the same. Then we perform the same measurements as before.
We do this a good number of times, and compute the average result from each time we measured
the field.

6. We write the data calculated in step four to a file, with each line containing the displacement
r in units of lattice spacing a (this gives us integer values even if the actual distance is double
precision), and the average value φ(x1)φ(x2) at this separation.

11

2.1.1 main.c

My main file contains separate functions to perform each of the above steps, and proceeds as follows:
get args() (step 1 command line arguments. The rest of step 1 is handled directly within the main
function.), unidist() (step 2), fielddist() (step 3), showdist() (step 4), correlate() (steps 5 and 6).

2.1.2 get args.c

This function simply exists to make the main file look tidier by reading the command line arguments
and checking for input errors, such as a negative or zero number of points, or a wrong number
of arguments. It also contains a small function, printerr(), which prints information on which
arguments to input, if an error is caught. This tiny function exists just to keep get args.c tidy!

2.1.3 fielddist.c

Since we have created a seperate file (update.c) to actually run the operation given by equation
1.25, you might expect this piece of code to consist of a single “for” loop that runs update() until
the required field distribution is produced. However, we have included an optimisation here which
makes fielddist.c much longer. In fact, the bulk of this code involves the optimisation step, although
the step is actually only performed a small number of times throughout the loop (If it were run a
lot, it would add to the complexity of the loop and hence slow the program down significantly.).
The optimisation involves picking the best amount by which to change the field. I explain it below.

Figure 2.1: Probability of Acceptance vs. Step
Size. Figure 2.2: Search Algorithm

Figure 2.1 was created by running a simple version of my program using different step sizes. By
step size, we mean the amount by which we alter the field in step 1 of the Metropolis Algorithm
(subsection 1.4.2). See the next subsection (2.1.4) to see exactly what the change looks like in my
code. For each step size, we record the number of times the metropolis step (equation 1.25) was
accepted, and this value is represented along the vertical axis. So we see that the larger the step size,
the lower the probability that it will be accepted. Now if the step size is zero, the field is not altered
at all, and hence the field is always accepted (with probability 1, since eS(φ)−S(φ′) = e(0−0) = 1 and
min[1, 1] = 1 in 1.25.) Increasing the step size increases the absolute value of S(φ) − S(φ′), which
decreases the probability of acceptance for negative changes to the action. As we can see from the
graph, the probability trails off to zero as the step size increases to infinity. Actually, this trend
is similar to the Boltzmann tail in statistical mechanics, though the graph of acceptance for my
program decreases more rapidly from it’s peak at 1.

We can see from this that if the step size is too small, the field will not change significantly each
iteration of the metropolis algorithm, although it will almost definitely change every time. On the
other hand, if the step size is too large, the field will not change at all most iterations, although

12

once in a while it will change significantly. Both of these cases would require a huge number of
iterations to converge to a solution, which would result in a very slow program. It turns out that
the acceptance rate that achieves the fastest convergence is approximately 75% of the time.

With this in mind, we write a search algorithm that very quickly finds the step size required for
an acceptance very close to 75%. Figure 2.1 was generated quickly, but with some inconvenience, as
we needed to creat a new program to produce it, and we would need to alter this program signifi-
cantly if we were to find the 75% step size for a different simulation. Also, finding the 75% point this
way involves checking every possible step size, whereas the following search involves trying out just a
few. In figure 2.2 we magnify the area of the graph (the curved line) which shows 75% acceptance on
the vertical axis. We will use this graph to visualise the search algorithm. First we pick a “left” step
size, step 1, and a “right” step size, step 2, that we believe result in acceptance rates, acceptance
1 and acceptance 2, lower and greater than 75%, respectively. We run the metropolis algorithm
for a number of iterations large enough to produce an accurate average, using the “left” step size.
We then produce an average acceptance in the same way using the “right” step size, and apply the
following code to produce a new guess at the step size:

1. Find the slope, m.

m = (acceptance2 - acceptance1)/(step2 - step1);

2. Use this slope to guess where 0.75 is, by changing the unknown quantity in the above equation
from m to step2, and letting acceptance2 = 0.75.

step = step1 + (0.75 - acceptance1)/m; (2.1)

Notice that while my program was running the metropolis algorithm in order to discover the accep-
tance rate, it was also updating the field, so no time is being wasted. Calculating the acceptance as
we go along does use up a small portion of time, but once we have found a good step size, there will
be no need to keep measuring the acceptance rate. This means that at a later stage, correlate(),
where most of the time is used up, will not be slowed down, and will use the most efficient step size.
Of course, my update() function, which is used in correlate() returns a value to say whether or not
the change was accepted, but this is a minor operation, and the compiler may possibly notice that
it is redundant when correlate is working away.

Using the new step, fielddist() calculates a new acceptance rate, all the while updating the field.
It decides whether the new step was a “left” guess, step1, or a “right” guess, step2, in the following
code:

if(acceptance > 0.75){
acceptance1 = acceptance;
step1 = step;

} ,

and the same for acceptance2, if acceptance ≤ 0.75. We are using the knowledge that the acceptance
rate decreases with step size in figure 2.1. This code is run every so often throughout the loop, by
running the optimisation step once in an outer loop, and the update step a large number of times
within each iteration of the outer loop. This is more efficient than using a conditional. We hard code
the value 10 for number of times the acceptance is measured before the initial field distribution is
achieved. This works perfectly, the acceptance converging to about 75% within two or three tenths
of the time it takes fielddist() to run.

There is one problem with this method. It is unstable if the initial two guesses are to the right of
the optimal step size, as the code (2.1) which finds the next step involves adding a positive value to
an old guess. In theory this can be solved easily by checking in the code to see if this is the case, and
using a similar formula which finds the next guess to the left, rather than to the right. However, we
have implemented a quick fix solution by printing an error message which requests lower step sizes,
and ending the program. We do this because if we pick two guesses in the far right of figure 2.1, the
slope is so shallow that a value of 0.75 is guessed as resulting from a high negative step size. This

13

means that finding guesses to the left, when the initial guesses do not border the root at y = 0.75,
also leads to an instability in the algorithm.

Lastly, fielddist() returns the average step size so that correlate() knows the best value to
change the field by, without having to redo the work done here.

2.1.4 update.c

This runs a single metropolis step. The change made to the field involves altering one randomly
chosen lattice point by a random amount. Changing one point at a time rather than the whole
field means that the size of the change varies much less, which makes the acceptance rate more
constant. Also, there is only one degree of freedom in changing one point, whereas there are as
many degrees as lattice points if we change the entire field. In other words, the chances of finding
a better configuration quickly is much grater if we make the change point by point. The maximum
size of this random amount is controlled in fielddist.c, where we have referred to it above as the step
size, and in the following code, step.

phi new = phi old + step*(drand48() - 0.5);

In this way the change can be either positive or negative, since drand48() is a uniform random variate
(generated from a linear congruential sequence) between 0 and 1. The action of each is calculated
by another function, s() (see section 2.2.1), and equation 1.25 is calculated as follows:

if(new < old || exp(old - new) > drand48()){
(*phi)[n] = phi new;
},

where new was the action calculated from phi new, and old from phi old. The conditional, new < old
stops exp(old-new) from going above 1 since the exponential of a positive number is always greater
than zero, thus fulfilling all requirements of equation 1.25.

2.1.5 showdist.c

The more important method in this file is outlined in appendix B, so we will not go into it here,
but we do need to show it’s conversion to computer language. In applying it in computer code, we
need to know the range that the field values fall into, so we run through the loop to find the highest
absolute value of the field, and pick a range slightly higher than this value. As we run through this
range, we also sum the field values in order to find their average. We use this average to calculate
the standard deviation of the field. we multiply the range by 2 to find the length that my bins cover,
and divide by the number of bins to find the width of each bin. Having set the value of each bin to
zero, we run the following code:

for(i = 0; i < M; i++){
bin = (int)((phi[i]+range)*n bins/spread);
bins[bin] = bins[bin] + 1;

},

where M is the number of field points, bin is the index in my array of bins[], phi[] is the array of
field points, nbins is the number of bins, and spread is the total length covered by the bins.

The logic behind the first line inside the “for” loop needs to be unravelled. Since bin must be
a positive quantity, and −range < phi[i] < +range, we needed to add range to phi[i] to make it
positive, giving us 0 < phi[i] + range < spread. This quantity is normalised by dividing by spread,
resulting in 0 < (phi[i]+range)/spread < 1, and so, to find which bin holds the field value, phi[i], we
multiply by the total number of bins, giving us 0 < (phi[i] + range) ∗n bins/spread < n bins. Note
that in my code, we round everything down by converting to type int, and so we do not run into
memory problems by trying to access bins[n bins], which does not exist. That spread and range
are obviously related indicates that spread may be an unnecessary variable, but it is used several

14

times throughout showdist.c, and so it saves making the same calculation more than once. In fact,
another optimisation we can make is to declare the variable, bin width = spread/nbins, which saves
more processor time. We could also replace n bins/spread by dividing by bin width in the above
code.

In creating the file containing the distribution, we simply use the inverse function of the formula
described in the earlier piece of code:

((double)bin)*bin width - range + bin width/2

, where we have added the term bin width/2 in order to represent the average field value held by
the bin. Leaving this term out leads to a distribution shifted slightly to the left. Against this, we
plot the following values on the vertical axis.

(double)bins[bin]/(bin width*M);

These are the normalised fractions of the field which fall into the bin labeled by bin, and we have
explained this normalisation in appendix B, where you can also see the plotted distributions.

One other result that this file, showdist.c, produces when executed is an analytical plot of the
distribution. Sometimes there are not enough points to produce a good plot, and so it is good to
see if the points generally follow a Gaussian distribution. we simply use the variance we calculated
earlier (in the process of evaluating the standard deviation) to produce a graph given by the for-

mula 1√
2π
ex

2/(2σ2), where sigma2 is the variance. Then we check to see if the points are generally

distributed around this curve.

2.2 Adaptation for Various Dimensions

I have left the description of s.c and correlate.c to this section, although they are necessary parts of
any basic serial code. In changing the code to solve different correlation functions, these were the
only two functions to change significantly.

2.2.1 s.c

From section 1.2.2, equation in particular, we see that the action varies with dimension for a free
field, so that s.c, which calculates the discrete lattice action, must change if we run simulations over
various dimensions. Of course, since the action for interacting fields involve a sum of the actions
for free fields, the dimensionality also changes the action for interacting theory. Keeping dimensions
the same, the action is still different when moving from free field simulations to interacting ones, so
we see that my function, s.c, has been changed many times throughout the course of my work.

Substituting 1.16 into 1.17 gives us

Slattice =
1

2

(

µφ2
n +

1

µ

∑

nn±1

(2φ̂2
n − φ̂nφ̂n+1 − φ̂nφ̂n−1)

)

(2.2)

In an attempt to simplify matters, we can change the above equation to:

Slattice =
µ

2
φ2
n +

1

2µ

∑

nn±1

(

(φn − φn+1)
2 + (φn − φn+1)

2
)

, (2.3)

where µ is the dimensionless quantity am, since a has dimensions of length, and m inverse length.
Since we simply change one field point at a time, the difference between the old action and the new
in the update step cancels out the sum in the above equation everywhere except at the updated
point. The one dimensional s.c function simply consists of:

phi minus = (n == 0) ? phi[M-1] : phi[n-1];
phi plus = (n == M-1) ? phi[0] : phi[n+1];

15

return ((phi n-phi plus)*(phi n-phi plus) +
(phi n-phi minus)*(phi n-phi minus))/(2*mu) + (mu/2)*phi n*phi n;

Increasing dimensions simply means that we must find phi minus and phi plus in a second dimension
and add another value computed from 2.3 to the version of s.c above. This means that we must
store two dimensional field values. We chose to continue using a one dimensional array to store
values, which meant that to represent two dimensions, we had to give each value in this array two
co-ordinates. we decided that to represent an N × N lattice, we would store the first N values in
the array as (x, 0), where x runs from 0 to N − 1, and the second N values as (x, 1), and so on up to
(x,N − 1), so that we have two degrees of freedom (x, y),both running from 0 to N − 1. We don’t
actually store a set of co-ordinates in a struct. Rather we use the logic that in order to increase
the y co-ordinate by 1, we must add N to the current position in my one dimensional array, and to
increase x we add 1, as in the one-dimensional code above.

Note that we am using periodic boundary conditions in the above code, since points at the end
of the array neighbour points at the start. In two dimensions though, we want points at the end
of a row to neighbour points at the start of the row in the x direction, and we want the points at
the end of a column to neighbour points at the start of the column in the y direction. This was
implemented as:

phi minus = (n%L == 0) ? phi[n+L-1] : phi[n-1];
phi plus = ((n+1)%L == 0) ? phi[n-L+1] : phi[n+1];

for neighbours in the x direction, and

phi minus = (n < L) ? phi[n+M-L] : phi[n-L];
phi plus = (n >= M-L) ? phi[n-M+L] : phi[n+L];

for neighbours in the y direction. To find an x coordinate we get the remainder of n/L and to find
the y coordinate we get the factor of n/L, where n is the index of the array and L is the number
of points in each dimension. For example, in a 10× 10 lattice, the x coordinates run from 0 to 9 in
increments of 1, whereas the array index runs from 0 to 99 (in increments of 1). The y coordinate
also runs from 0 to 9, but is incremented in steps of 10 on this lattice, so that in translating from
array index to y-coordinate, we divide by 10, and discard the remainder. Picking an array index
at random, 68, we get (x, y) = (8, 6), since the factor represents y and the remainder represents x
(68/10 = 6 remainder 8). This gives us the required coordinate’s where (1, y) = y1 (eg. (1, 5) = 51)
and so on, giving (x, y) = yx (eg. (8, 6) = 68). we have described the system for a decimal 10× 10
lattice, but the same logic applies for any N ×N matrix, using base N aritmatic. So we see that on
the left boundary n%L = 0, and on the right boundary (n+1)%L = 0, since the next array index is
the first index of a new row. We simply insert phi minus and phi plus into the same formula (the
one returned by the 1D code) for each dimension and add. Extending this logic to higher dimensions
is now simple. For example, here are some fragments of the four dimensional code. The x dimension
is the same as in two dimensions, the y dimension looks like this:

phi minus = (n%L2 < L) ? phi[n+L2-L] : phi[n-L];
phi plus = (n%L2 >= L2-L) ? phi[n-L2+L] : phi[n+L];,

the z dimension is as follows:

phi minus = (n%L3 < L2) ? phi[n+L3-L2] : phi[n-L2];
phi plus = (n%L3 >= L3-L2) ? phi[n-L3+L2] : phi[n+L2];

and the fourth (t) dimension in 4D is similar to the second (y) dimension in 2D:

phi minus = (n < L3) ? phi[n+M-L3] : phi[n-L3];
phi plus = (n >= M-L3) ? phi[n-M+L3] : phi[n+L3];

16

2.2.2 correlate.c

Making measurements in one dimension was straightforward, but extra dimensions lead to more
degrees of freedom, which meant that measurements could be taken in many directions. This
complicated the way we chose random points with fixed separation, and also meant we needed
a coordinate system to find the relative position of the two points. However, the solution to the
latter problem has already been introduced in the previous section, s.c.

The basic steps involved in correlate.c was described in section 2.1. The first part consists of a
loop to firstly run update() until the field changes significantly (we simply use trial and error and
a little intuition to decide how many iterations the loop runs for.), and secondly to measure the
correlation function across the field. The second part involves recording my average measurements
in a file. In the one dimensional version of the code, the measurements are done as follows:

amplitude = 0;
for(n = 0; n < M/2; n++){

amplitude += phi[n]*phi[(n+displacement)%M];
}
amp[displacement-1] = amp[displacement-1] + amplitude;

The array, amp[], contains the amplitude at various separations. The index of this array grows
proportionally to separation of points on the field. Note that in consistency with s.c, periodic
boundary conditions are imposed via the %M in the code. The above code assumes that the lattice
is small (There is no point in creating a large 1D lattice since the correlation function falls off quickly,
and the lattice spacing does not need to be incredibly small.) but if the lattice were bigger, we would
pick a number of random points, n, and use the same encoded formula at each of these points. There
is no need to show this code for one-dimension, as the two dimensional code uses such a method
also, although with added complications:

for(displacement = 1; displacement ¡ d max; displacement++){

amplitude = 0;
for(j = 0; j < measurements2; j++){

n = drand48()*M;
dx = drand48()*(displacement+1);
dy = displacement-dx;
if(drand48() < 0.5) dy = -dy;
m = (n/L)*L + (n + dx)%L;
m = (m + M + dy*L)%M;

amplitude += phi[n]*phi[m];
}
amp[displacement-1] = amp[displacement-1] + amplitude;

}

As we can see, we have divided the displacement randomly into two directions, x and y, with two
simple steps. Then, to find the point in each direction, we use the coordinate system described in
s.c. To move a distance dx, without moving in the y direction, we divide by the length of the x
dimension, L, to find where we are in y-coordinates (Deviding a type int number by another int
automatically rounds down in c.) and multiply back by L to get to the first position in the row
containing the current y-coordinate. The current random point is positioned at (n/L) ∗ L + n%L,
since n%L gives us the x-co-ordinate, and n/L gives us the y-coordinate, and each y-coordinate has L
associated x-co-ordinates, which means it is incremented in steps of L. Imposing periodic boundary
conditions on the current row of L x positions gives the final equation above. we have allowed for
the possibility for y to be negative in order to cover all directions, so to avoid problems in using the
% operator, we have added M = L× L, the size of the matrix, to the sum: m = (m+ dy ∗ L)%M .

Picking random directions in four dimensions was less simple. In the two dimensional case, the
dx and dy directions are related by, dx + dy = d, where d is the relative displacement of points

17

n and m. The code which we first implemented in four dimensions involved breaking d into two
directions, dx and dy, and further breaking dx into two directions dx and dz, and dy into dy and dz.
This quickly resulted in four random directions, but left a problem that dz was dependant on dx
and dt was dependant on dy. For example, if dx was 0, dz was automatically 0, which meant that
we wasn’t sampling properly. We tried switching dz with dt at random, and various similar random
switches, but this just meant that the dependencies were more random. In the end, we had to resort
to the following loop, which thankfully turned out to make less difference to the performance of my
code than we expected.

dx = 0; dy = 0; dz = 0; dt = 0;
for(m = 0; m < displacement; m++){

cnst = drand48();
if(cnst < 0.25) dx++;
else if(cnst < 0.5) dy++;
else if(cnst < 0.75) dz++;
else dt++;

}

I then chose randomly to sample in positive or negative directions in each dimension. To move in
each direction, we used usual modular arithmetic.

m = (n/L)*L + (n + L + dx)%L;
m = (m/L2)*L2 + (m + L2 + dy*L)%L2;
m = (m/L3)*L3 + (m + L3 + dz*L2)%L3;
m = (m + M + dt*L3)%M;

2.3 Adaptation for Interacting Fields

The first type of interaction we simulated was φ4 interaction, the simplest possible case. This is
based on the Lagrangian,

L =
1

2
(∂µφ)

2 −
1

2
m2φ2 −

λ

4!
φ4, (2.4)

which is simply the Lagrangian of the free field theory plus an interaction term containing φ4. A
wick rotation turns the difference into a sum, and the change to the code is just as simple as the
change to the Lagrangian. This is an example of the field interacting with itself, and no other fields
are included, which means that the only function to change is s(), with

((phi n-phi plus)*(phi n-phi plus) + (phi n-phi minus)*(phi n-phi minus))/(2*mu)
+ (mu/2)*phi n*phi n + lambda*phi n*phi n*phi n*phi n;

being the new encoded action for the one dimensional field. As always, higher dimensions just
involve summing over the kinetic terms in each dimension.

The second type of interaction was the interaction of two fields of the same type. It just involved
adding two free fields together, plus a coupling term which was λφ2ψ2. This was as simple as it
sounds, and simply involved creating two arrays of the same size, and updating the same points at
the same time. We updated both fields by the same amount each time, otherwise the acceptance rate
would have been too random. The change to s.c need not be shown here, as it just incorporated the
same logic as before. The function, showdist.c, was also altered in order to give a two dimensional
distribution. This was achieved by binning the two fields separately, and multiplying the bins
for each co-ordinate (x,y) = (nthbin of φ,nth bin of ψ) in the range, ((1,1),(1,2)...(#bins,#bins-
1),(#bins,#bins)) to get the distribution over an area, rather than a length.

18

2.4 Parallel Adaptation

My main desire in creating parallel code was to keep interprocess communication at a minimum.
This was easier while updating the field distribution than actually measuring the field, since the
measurements require instant knowledge of lattice values that may exist on another computer. The
lattice must be spread over all the processors in order to distribute the work evenly, since all work
involves the lattice. The first change we made to the code was therefore to create a new function to
decide how to divide up the field. We named this function, devideAndConquer(), after the method
it initiates. Since my n dimensional lattice is stored in a one dimensional array, we just gave each
process a section of lengthM/np, whereM is the number of lattice points, and np stands for number
of processors. To distribute the remainder, we simply added 1 to the length of each processor ranked
lower than the value of the remainder (the remainder of M/np is automatically less than np, so this
is safe).

Since the action at any point depends not just on the value at that position, but also on it’s
“next-door” neighbours, the points along the border between any two processors will depend on
values found in the other processor’s section. In order to reduce communication between processors,
it would be nice to store with each processor the neighbouring values held by the other, without
attempting to update these values (They still fall within the other processor’s domain). A problem
arises though when the neighbouring processor (B) updates the values at the border, since the
processor (A) reading these values may be using redundant values. The solution is for processor B
to avoid the points that A is using, and so the processors must have an agreement as to which points
are currently being updated. The obvious and best agreement is to update even points only until
the updated values are communicated, and then to update the odd points. This is best because the
immediate neighbours of an odd point will all be even, and vice-versa.

Picture a chess board, with even points on white squares and odd on black. Since the updates
made to the field are small, it is possible to update only odd or only even points for some time
before communicating across the relatively slow network. When communication does occur, it is a
quick, once off transfer of Ld−1 values, where L is the length of the field in each dimension (assuming
equal dimensions) and d is the number of dimensions. If we remember that a chess board has eight
squares along each side, mentally placing two chess boards together gives us an image of the border
between processors. The chess board represents a processor containing sixty four lattice points.
The number of dimensions in a chess board is 2, which gives us 82−1 = 8 squares along a border.
Stacking seven more chess boards atop each of the two already proximate boards causes 82 squares
to touch, where there are 83 squares in the collective body (and equivalently 83 lattice points in each
processor represented by eight chess-boards). However, since either only even or only odd points
have been updated, we only need to transfer information of approximately Ld−1/2 in length, both
ways. Each processor will actually transfer 2Ld−1 values, since it will have a processor to it’s left
and to it’s right (assuming periodic boundary conditions).

Unfortunately, much of the work involved in my program happens within correlate.c (how much
depends on how large an ensemble needs to be gathered), which only updates the field between
measurements. Since the measurements must be made across the entire field, we are left with a few
options.
Options

1. Each time we want to measure, store the entire field on one processor.
2. Every time we need a value from another processor, retrieve it via the network connecting the

processors.
3. Only measure the correlation within each processor’s section.
4. Do (3) for small displacements, and do (2) for larger displacements.
The first option almost negates the advantage (within correlate.c) of updating even and odd

points only, since the communication of L(d−1)/2 values does not need to happen very often before
each measurement is carried out. In comparison, each measurement carried out according to (1)
involves transferring Ld∗sizeof(double) to one processor, and while it is carrying out operations, the
other processor nodes might as well be idle, since they will have to wait in order to communicate later.

19

One way of possibly getting around this problem is to have one processor carry out measurements
to the field while the other(s) update it, transferring data every time measurements are finished.
We didn’t attempt to implement this method in my own code, as it seems unlikely to work well.
The amount of time it takes to compute the correlation function is not large, and using a wide
range of ensembles works better than making many calculations within each ensemble, so increasing
the number of measurements for each iteration would not be very advantageous. The amount of
data transferred after each field change would still be large. In addition to speed losses, there is no
memory advantage, since the field must be small enough to fit on one processor.

The second option also involves a lot of communication, and the communication is more random,
although we have written code which keeps the transfer of data orderly, preventing deadlocks. Every
processor must gather information from all processors every single time the field is measured. This
information tells each processor node whether a value required by another node is in its section.
Each processor starts by sending any data required to processor’s of lower rank, and once finished,
sends data to the right. This prevents two processor’s from sending data to the other at the same
time. Unfortunately, this means that information is transferred more often than one would imagine.
The amount of data transferred this way is np∗sizeof(int)∗measurements+numberofvaluessent.
The first term in this formula will generally be much lower than the size data transferred in (1),
and if the maximum length of displacement is small compared to the size of a processor’s domain,
the second term should not be high either. This is an especially useful fact in higher dimensions,
where we still keep the displacement to less than the length of a dimension, to prevent measuring
over a full periodic dimension. In other words, if we measured far enough in one direction, we would
measure the same point against itself (like looking at the back of one’s head by looking straight
across the universe) which would be undesirable.

However, if it is unlikely enough that we will need to measure across two processors, there
should be no need to consider inter-communication at this stage at all. Each processor could simply
measure it’s part of the lattice measurements/np times, where measurements is the total number
of measurements to be made on the lattice. This should be the quickest method, but the least
stable. In fact, my attempt to implement this code failed to achieve the correct results for short
displacements. I am not sure if this is due to a code fault or the instability of the method, since we
did not have enough time to investigate further.

2.5 Kaluza-Klein Code

The final, and most complicated, piece of code incorporated aspects of all the previous sections. In
fact, it had an advantage over the free field parallel code in that we were only measuring over a Ld−1

lattice, since we are only interested in our four dimensional world (encompassed by a five dimensional
world). Just as in the interaction code, we needed to create two fields, but one field exists only in
four dimensions (on the brane), and the other in all five. Unlike the interaction program where we
placed both fields within one action function, it is easier to simply add the action from our four
dimensional code for one field to the action from our five dimensional code for the other, and include
the term λφψ in my update function. When choosing random points within the lattice, we had
to check to see if the points also existed on the brane. This meant setting up separate (though
connected) coordinate systems for the field in five dimensions and the one in four. To convert from
five dimensions to four, we use:

q = (r/L4)*L3 + r%L + r%L2 + r%L3 + L3;

, where % is the mod operator, r is the five dimensional coordinate, and q is the four dimensional
coordinate. To convert from four dimensions to five we use:

r = (q/L3)*L4 + q%L + q%L2 + q%L3 - L3;

Of course there is a loss of information when converting from five to four, but this information loss
is not apparent in four dimensions. Everything else followed from this logic. We are able to figure
out the length of the section containing the brane for each processor, and are able to know when a

20

random point exists on the brane. Because the action is stronger for the interacting field, whenever
our algorithm picks a point on the brane, we force it to pick a second random point from there, thus
sampling the more important, and slower evolving area more often. When sampling points outside
the brane, we only use the five dimensional action, s(), applied to the five dimensional field. If a
random point falls on the brane, however, we use the following action:

old = s(phi old, n, (*phi), L, L2, L3, L4, M, mu, nu, r)
+ s2(psi old, m, (*psi), L, L2, L3, L4, mu, nu, r)
+ g*phi old*psi old;

This is a part of our update2() function, which we use outside the brane. In the above code we
calculate the old action, and the new action is calculated the same way, simply substituting phi new
for phi old and psi new for psi old. The second part of the action in the above code, s2() is identical
to the four dimensional free field code, and the first part of the action s() is the same as the five
dimensional free field code.

The same options for parallel measurements were available for Kaluza-Klein code as were for the
Free Field algorithm. The difference here is that option (1) was less of a setback, since it took less
time to transfer the four dimensional field across than it did the borders during the update process.
The measurements no longer involve as much of the communication.

2.6 Software Testing

The two main methods we employ to test our code involves looking at the internal computation and
at the external results. The internal testing simply involves printing out values as they are computed
or passed as arguments, and double and triple checking the logical progression of our algorithms.
Externally, we test our results against known graphs (see graph 4.1 and appendix B for example),
but also looked for a continuation of trends seen in simpler simulations (see graphs 4.2 and 4.7).
Another, obvious way of testing code is of course to run with various parameters, and this gave us
the opportunity to find points in the code where we needed to catch errors (see the end of section
2.1.3 for example).

Other checks we use involve looking at cross sections of the solutions outputted by the code.

Figure 2.3: 2D cross sectional distributions on
a 4D lattice Figure 2.4: Correlation function measured in

four directions

Figure 2.3 was produced by binning the distribution for every L2 section of an L4 lattice (L
is the number of points in any direction). The entire L4 lattice had been binned to check it’s
distribution, which worked out to be correct, but this check ensured that the distribution was locally
correct at every point also. The other figure (2.4) is again measured on a four dimensional lattice.
Instead of sampling the two-point correlation function over all space on the lattice, we measure it

21

for displacements in only one of the four directions, x, y, z and t each time. The four lines represent
the four orthogonal correlation functions. In this way we tested the code against itself, since the
plots must be equal (The Euclidean metric used in this space is equal to the identity matrix.), and
the result above confirms this.

22

Chapter 3

Profiling and Parallel Performance

3.1 Serial Performance

Profiling: One Dimensional Free Field The compiler optimisation shows limited influence on
the code efficiency for the one dimensional free field. The only optimisation possible is achieved by
a -O1 flag and any other tricks the compiler attempts only hinder the process.

-O flag total % s % update % correlate
0 22m 6.447s 56.02 26.47 16.50
1 18m54.340s 44.76 32.24 21.79
2 20m36.022s 43.17 42.07 11.32
3 20m34.629s 43.28 42.28 11.11
4 20m34.883s 43.54 41.79 11.12
5 21m46.839s 43.29 41.65 11.33

Profiling: Two Dimensional Free Field Almost the same speed gains are achieved for two
dimensions, with the peak optimisation (again -O1) somewhere between 85% and 90% of the original
speed, as before. If anything, the peak optimisation is less effective here, but further optimisation,
while not producing greater efficiency than the first optimisation, produces better results than that
portrayed in the table above. This indicates that the complexity of the program is very relavent
when choosing which flag to use when compiling.

-O flag total % s % update % correlate
0 51m50.769s 60.48 36.51 2.45
1 45m44.877s 56.36 41.01 2.45
2 47m44.765s 57.24 40.58 2.04
3 46m31.669s 62.29 35.42 2.15
4 47m34.328s 61.95 35.85 2.06
5 48m18.144s 62.68 35.15 2.05

Profiling: Three Dimensional Free Field The obvious difference here is that the peak
optimisation is not achieved until the fourth row of the table below. However, the peak effect
appears to decrease slightly (in terms of percentage speed up) as dimensions increase. Here the
optimal time is roughly 90% of the base time.

-O flag total % s % update % correlate
0 59m21.322s 71.54 24.61 3.63
1 56m37.454s 65.31 28.08 6.37
2 54m27.367s 65.42 30.92 3.23
3 53m0.191s 65.13 31.23 3.19
4 56m24.985s 65.74 30.82 3.00
5 62m17.545s 72.37 23.93 3.49

23

Profiling: Four Dimensional Free Field The times taken in four dimensions are colossally
different, but this is because we increased the number of iterations of the metropolis algorithm
tenfold. As dimensionality increases, it takes longer for the field to settle to a fixed point, but it
is unlikely that we needed to increase the time by tenfold, since we kept the number of iterations
equal for one, two and three dimensions. Obviously the programmes do take longer as the code
becomes more complex, but those time increases are exemplified by the earlier three tables, rather
than the one below. The first and second optimisations are very close here, but it is the third that
again provides the lowest period. Any optimisation at all immediately decreased the time by a large
amount, and all optimisations are close enough that their differences could result from random noise
on the computer itself. The percentage speed up here belies the previous trend, since it is roughly
82%, the highest so far when we might have expected the lowest. It seems that compiler optimisation
is a little unpredictable, as the some of the methods it uses may interfere with the other methods,
but may not, depending on the particular piece of code.

-O flag total % s % update % correlate
0 679m10.106s 82.73 13.55 3.35
1 557m39.435s 74.69 20.49 4.19
2 558m58.012s 74.57 20.85 3.98
3 555m30.802s 76.52 18.60 4.00
4 592m3.469s 75.67 19.04 4.59
5 591m51.823s 75.72 19.00 4.58

my opts.
1 609m6.543s 81.26 14.93 3.40
2 589m50.753s 81.24 14.34 3.45

In all of the above cases, s.c is the most time consuming function, and also the one which
optimisation effects the most, given that it dominates the other processors less when -O flags are
used in compilation. With this in mind, we attempt to make our own changes to s.c. There is no
point in trying to change the other functions, especially correlate.c, or those not worth showing in
the above tables. The update.c file left little room for change anyway, but even were we to focuss
on it, the performance difference would be minor. The changes we make to s.c involves removing
dead code and common subexpressions.

The dead code was two arguments required by update.c and it’s daughter, s.c, that should have
been reduced to one argument. The arguments were the coefficients of the kinetic and potential
terms of the action, but as it turned out (1.17), the same coefficient, µ, could be used with both
terms, as a devisor and multiplier respectively. The code could have been further speeded up had we
hard-coded µ into the function s.c, but hard-coding any such values into the main function instead
made the program easier to use.

There were a number of common subexpressions, and it is easier to show them by looking at a
section of the optimised s.c.

phi minus = phi n - ((n%L3 < L2) ? phi[n+L3-L2] : phi[n-L2]);
phi plus = phi n - ((n%L3 >= L3-L2) ? phi[n-L3+L2] : phi[n+L2]);

S = S + phi plus*phi plus + phi minus*phi minus;

We compare this to the code in section 2.2.1. The term phi n - phi minus and it’s counterpart are
now calculated once only. phi n is placed outside the conditional in order to make branch prediction
(automatically done at the hardware level) more effective, since this means that each branch is easier
to calculate. The other change we make is to take the 1

2µ term out of the kinetic sum, and divide
afterwards. In the table above, “my opts” 1 represents some of these optimisations, while 2 includes
all of the above. Notice that these optimisations almost reach the same speed up as the compiler
optimisations.

24

3.2 Parallel Performance

In this section we simply demonstrate the performance of the four dimensional free field code, since
the method of parallelization is similar for all simulations. We would expect the same speed up for
the interacting fields, which we also parallelised in four dimensions. That code took a very long time
to run in serial. Also, we did not create a serial version of the Kaluza-Klein code, since the bones of
the parallel code had been previously designed in the parallelisation of simpler code.

Parallel Profiling (1): Four Dimensional Free Field The profile below uses method 1 in
section 2.4, where only one processor carries out the work of measuring the field. Compared to the
serial version in the previous section, the correlate.c function takes up a huge amount of time. This
is obviously due to the overheads in parallelising the code. In particular, the method of finding even
and odd points is quite intensive, and I would guess that this is the main reason for the extended
use of correlate.c, especially since it is used every time update.c is called. The -O2 flag provides the
greatest optimisation, with roughly 75% of the basic time. That this is the best optimisation yet is
unsurprising, as it is also the most complicated algorithm, with more room for change.

-O flag total % s % update % correlate
0 340m58.792s 67.44 8.61 22.07
1 263m53.084s 71.31 10.66 16.43
2 259m32.603s 71.30 8.78 18.04
3 266m53.882s 70.08 10.97 16.94
4 263m55.643s 69.84 10.66 17.45
5 263m20.292s 69.86 10.76 17.37

Parallel Profiling (2): Four Dimensions This is the profile for method 2 of section 2.4. The
difference between the two methods is carried out in correlate.c, but although this function appears
to take up less time here, this method actually turns out to be slower! I am not sure why this is,
but the two programs call different MPI functions, so perhaps that makes the difference. However,
the profiler we are using here, gprof, does not show any time given to interprocess communication
for either programs. Perhaps this is a weakness of the profiler. We had assumed that there would
be less communication in this method, and were more worried that the large number of conditionals
would slow it down. It seems that there is something else going on behind the scene here, unless
the computers themselves were simply a lot slower when we ran method 2. The -O2 flag is again
the most efficient compiler, but does not manage quite as good a speed up as it does in the previous
method. However, the difference is not large, which is unsurprising from two such similar processes.

-O flag total % s % update % correlate
0 352m15.261s 68.31 8.93 20.57
1 282m20.777s 68.86 12.80 16.13
2 278m20.831s 68.14 9.32 20.27
3 299m29.089s 58.85 14.98 23.45
4 312m50.876s 64.39 10.59 22.37
5 330m03.036s 64.10 12.88 20.10

I mentioned in section 2.4 that the advantage of method 2 would be greater as the lattice size
grows. The lattice size we used to test this code was 20× 20× 20× 20 (20 points in each direction),
which is good enough to get a correlation function, but the processors we used allow for a lattice
size of somewhere around 754 in four dimensions in serial, and this is very slightly higher in parallel.
In fact, using method 1 this size must be greatly reduced, as one processor must be able to store the
entire field on it’s own, as well as a section of the same field. Using a huge lattice would probably
slow method 1 down a lot. The amount of data transferred across the network would rise since the
entire field is communicated. Unfortunately we did not have time to test the two methods on a
larger scale.

Since method 1 was the faster of the two, we tested it against the serial code. There was no
need to run the code long enough to get an accurate result here, and running for a short time meant
that we did not have to queue for a long time in order for the supercomputer to free up twelve

25

Figure 3.1: Speed up of time(s) vs processors for 4D simulator

processors. As we can see, the time is inversely proportional to the number of processors until we
get above about four, at which stage it starts to flatten out. This is because each processor only
needs to run for 1/(no. of processors) times the total number of iterations required to achieve a good
field distribution. The profile graphs show that the overheads are quite large in correlate.c however
(comparing with the serial version), and this explains why the speed up flattens out fairly soon.

In order to optimise the code for better speed up, we would need to develop a faster way of
finding random even and odd points, as this appears to be the largest overhead (communications
don’t appear to take particularly long, at least for the lattice sizes we chose). A good alternative
might be to store even and odd points separately in two parallel arrays. That way, if we are sampling
even points, we simply sample from the even array, and vice-versa. Then, to access neighbouring
points, one simple modulus calculation would decide whether a point is even or odd. In fact, in
s.c, the neighbouring points are always even if the current point is odd, and odd if the latter is
even, which requires no calculation. Since the arrays are parallel, the index of a neighbour is easy
to find. The only possible loss here is in the cache, as it might not register close neighbours in the
array, given that neighbours are now stored in a separate array. However, this would only have been
an advantage for neighbours in the first dimension, on the same section of the array. I think that
this would definitely be an improvement, and would hopefully provide better speed up beyond four
processors.

26

Chapter 4

Results

4.1 Free Scalar Field Theory

Figure 4.1: Correlation function for a 1D free field: S = − 1
2

∫

φ(∂x +m)φ

This was an important result in that it paved the way for more advanced calculations. It
represents the simplest possible correlation function, the one dimensional free field propagator. The
red dots are the computational results, while the green line is the theoretical prediction, 1

2e
−mr

(appendix A.2), where r is the distance separating the two field points. we should point out that
the mass in this formula has necessarily been changed to mu = ma. The mass has a value of 1 and
the lattice spacing is 0.05, giving mu = 0.05, and the number of points on the lattice is 300. The
horizontal axis represents the number of lattice points separating field points.

The discrepancy as values fall towards zero disappears when the program is run using a wider
sample space of fields, or by changing the field more between iterations. The graph tells us that
there is a much lower probability of propagation between two points as the distance between those
points widens. In fact, the amplitude (square of the probability) decreases exponentially.

To investigate the physics further, we want to know how the function (4.1 changes by varying
the mass of the field. In figures 4.2 and 4.3, we show various correlation functions, where mass
decreases from 1 to 9 with depth. Otherwise, each function has exactly the same specifications as in
fig. 4.1. Notice that higher masses result in increased fall off with displacement. This makes sense,
as an increase in mass means that the action becomes stronger (The field values are squared in 1.17;
therefore the action is always positive.), and the principle of least action tells us that this reduces

27

Figure 4.2: Correlation functions with vari-
ous masses from 1 to 10 in steps of 1: S =
− 1

2

∫

φ(∂2
x +m)φ

Figure 4.3: Another, perhaps clearer view of
the figure 4.2:
S = − 1

2

∫

φ(∂2
x +m)φ

the amplitude between points on the lattice. Another way to see this is that the higher the value of
our action, S, is the smaller the propagation term, e−S , is. We can also see the effect that varying
the mass has on the field distribution. Figure 4.4 shows this effect on a two dimensional free scalar
field.

Figure 4.4: Changes to a 2D scalar field as mass increases from 1 to 5: S = − 1
2

∫

φ(∂2
x + ∂2

y +m2)φ

The distribution with the lowest peak is for a mass of 1, the next highest has mass 2, and so on
up to 5. We can see that the peak of each plot appears to rise proportionally to the mass. It seems
that the more massive the field, the less easily the field fluctuates, since the field strength changes
less easily. This is apparent from the fact that more points cluster around the center of distribution,
and we have already seen that movement over the field is more restricted with higher mass, from
figures 4.2 and 4.3.

In two dimensions the two-point correlation function showed the same trend with an increase
in mass, indicating that our simulations still worked as we added dimensions. The lattice spacing
and number of points is still the same in the graph below, where we have measured the correlation
function for masses 1 to 5. Notice that for an equivalent mass in higher dimensions the graphs show
steeper descent. This gives me a guideline for what my correlation function should look like in yet

28

Figure 4.5: 2D free field correlation func-
tions with various masses from 1 to 5: S =
− 1

2

∫

φ(∂2
x + ∂2

y +m2)φ

Figure 4.6: Another, perhaps clearer view of
the figure 4.5: S = − 1

2

∫

φ(∂2
x + ∂2

y +m2)φ

Figure 4.7: Correlation Functions for 1D, 2D
and 4D (m = 1, µ = 0.05): S = − 1

2

∫

φ(m2 +
∑

µ ∂
2
µ)φ

Figure 4.8: Field Distributions for 1D, 2D and
4D (m = 1, µ = 1): S = − 1

2

∫

φ(m2+
∑

µ ∂
2
µ)φ

higher dimensions. Figure 4.7 shows the continued trend as a succesful test for my simulation.

As expected, the four dimensional correlation falls off even faster. The next two graphs, figures
4.9 and 4.10 show a clearer picture of the individual four and two dimensional correlation functions,
respectively.

I have plotted the four dimensional function beside it’s theoretical prediction. The theoretical
plot is given by the equation, 1

r e
−mr, where r is measured along the lower axis, and m is the mass, in

this case, 1. The four dimensional action was the same as the one dimensional action summed over
four dimensions, S = 1

2

∑

φn(−
1
µ2nn′ + µ)φn′ , where µ = mass× lattice spacing. The correlation

on the lattice was given by 1
a2.M

∑

M φnφm, where a is the lattice spacing and M is the number of
measurements taken. The discrepancy between the theoretical prediction and the lattice result is
distortion from the lattice. This effect is amplified as we add dimensions. The lattice correlation
function can be found in, “Gauge theories: An Introduction” [5].

4.2 Interacting Fields

The first case of interaction we investigate is that of φ4 theory, in which the scalar field interacts
with itself. The results are as follows, with coupling constants 0, 0.005, 0.05 and 1. The functions

29

Figure 4.9: Correlation Function for 4D:
S = − 1

2

∫

φ(2 +m)φ

Figure 4.10: Correlation Function for 2D:
S = − 1

2

∫

φ(∂2
x + ∂2

y +m2)φ

of least amplitude are the ones with the highest coupling constant. Note that the true coupling
constant is 4! times the couplings cited above, since in our code, it was inefficient to divide by 12
every time we calculated the action.

Figure 4.11: Changes in 1D φ4 field with increased couplings: S = − 1
2

∫

φ(∂x +m)φ+ λφ4

Next we investigate the effects of an interaction between two fields. We give these fields the same
mass and first set the coupling between them to zero. This reduces the amplitude by one half of
4.1, but looking at how the action has changed, S(φ)→ S(φ)+S(ψ), this is hardly surprising. S(φ)
and S(ψ) have equal strength, and so the action has doubled in strength for either field.

As we can see from figures 4.12 and 4.13, introducing a coupling between the two fields results
in immediately decreased amplitude even for small displacements across the field. In terms of the
simplest picture of the maths involved, this is obvious. The coupling adds an extra term to the
action, λφ2ψ2, and we have seen so far that this decreases amplitude. However, the physics drawn
from the picture is slightly different from the difference in adding dimensionality. The slope itself
does not actually decrease noticibly with increased coupling. Instead the amplitude is decreased
by a fairly constant amount at every displacement, and this, rather than increased fall off, is the
reason that the lower plots reach near zero more rapidly. This constant decrease in amplitude is

30

synonymous with interference patterns that we see in wave amplitudes. The coupling of course
causes interference, as both fields are now interacting directly.

Notice in figure 4.12 that the decrease going from 0 coupling to 0.01 is less than the difference
caused between 0.04 and 0.05. Figure 4.13 goes from 0 to 0.5 in steps of 0.1, ten times the increment
in 4.12. It seems that the coupling can only have so much effect on the correlation function. Since
we have already suggested that we are seeing an interference pattern here, we can explain this easily.
The interference between two fields has a minimum and maximum phase. The interference can be
completely destructive, or completely constructive. The fields only have so much energy to lend to
one another, and increasing the coupling only increases how much the energy of each field influences
the other. Thus the amount of energy in the system limits how much the coupling can effect the
interaction. This explains why we see the correlation function approaching a limit with increased
coupling in graphs 4.12 and 4.13.

Figure 4.12: Increase in fall off with introduc-
tion of coupling: S = − 1

2

∫

(φ(∂2
x + m2)φ +

ψ(∂2
x +m2)ψ + gφ2ψ2)

Figure 4.13: Continued trend with coupling
increased tenfold: S = − 1

2

∫

(φ(∂2
x + m2)φ +

ψ(∂2
x +m2)ψ + gφ2ψ2)

Perhaps it is a good idea to go back to the field distribution and observe the changes there.
Since there are now two fields rather than one, the distribution becomes two dimensional. When
we include only the potential term, with mass of 1, we get the same distribution as a standard two
dimensional Gaussian distribution (Figure 4.14). Increasing the masses gives the same trend as we
got for a free field. We can see this by comparing figure 4.15 to figure 4.4, but we must note that
figure 4.15 does not involve a kinetic term, whereas figure 4.4 does. Both figures 4.14 and 4.15 have
an action given by S = − 1

2

∫

m2(φ2 +ψ2)+ gφ2psi2, ie. it contains only the self-energy of the fields.
Adding in a kinetic term gives a much lower standard deviation for the distribution, which we can
see in figure 4.16. In this figure, S = − 1

2

∫

(φ(∂x+m2)φ+ψ(∂x+m2)ψ), and the higher peak is the
one with the kinetic term added.

Figure 4.14: normalised two
dimensional distribution

Figure 4.15: variations with
mass

Figure 4.16: change in dis-
tribution with addition of ki-
netic term

Figure 4.17 shows how the potential field (S = − 1
2

∫

m2(φ2 + ψ2)) changes with increased cou-

31

pling. The lowest peaked distribution has a coupling constant of zero, the next 0.05, the next 0.5,
and the highest 1. Interestingly, the change from 0.05 to 0.5 is much more effective than the change
between 0.5 and 1, even though the difference in coupling is roughly the same. This is a marked
difference from the way that mass alters the distribution. The same can be said of the field which
includes the kinetic term (S = − 1

2

∫

(φ(∂x +m2)φ+ ψ(∂x +m2)ψ)) in figure 4.18. The coupling for
the lowest peaked plot is 0, then 1 for the middle peak, and 2 for the highest. Also, the kinetic term
seems to damp the effect of the coupling further, since increasing the coupling has less effect in the
second graph.

Figure 4.17: Change in distribution with in-
troduction of coupling to purely potential
fields: S = − 1

2

∫

(m2φ2 +m2ψ2 + gφ2ψ2)

Figure 4.18: Changes to interacting fields
with changes to coupling constant: S =
− 1

2

∫

(φ(∂2
x +m2)φ+ ψ(∂2

x +m2)ψ + gφ2ψ2)

4.3 Kaluza-Klein Interaction

The interaction between the field confined to the brane and the one confined to the bulk had
dissapointingly little effect on the correlation function of the four dimensional field. This indicates
that the five dimensional field is very weak (also true of gravity). The two-point correlation function
was only measured on the field restricted to the brane, which means that there is a lot of room for
further analysis here.

Figure 4.19 shows an increase in the amplitude as the coupling constant increases! This is the
opposite of what happened for two fields of equal dimension, but a look at the last two graphs shows
that this is probably just experimental error, as the lines are so close together. Figure 4.21 shows
that while a coupling of 0.5 lies above the correlation function for 0 coupling, a coupling of 1 lies
below. Figure 4.22 shows a range of correlation functions for various couplings from 0 to 10.

32

Two-point Correlation functions measured across φ

Sbrane = −
1

2

∫

φ(2 +m2)φ+ Sbulk + gφ2ψ2

Sbulk = −
1

2

∫

ψ(2 + ∂5 +m2)ψ

Figure 4.19: Change in correlation function on
the brane with couplings g = 0, 0.05 and 0.5

Figure 4.20: A slightly better view of figure
4.19, with the x axis scaled to log10 for clarity

Figure 4.21: Change in correlation function on
the brane with couplings g = 0, g = 0.5 and g
= 1 (in log scale)

Figure 4.22: Change in correlation function on
the brane for a number of couplings between
0 and 10 inclusive. (in log scale)

33

Chapter 5

Conclusions

The aim of this thesis was to probe the effect of an extra dimension in the correlation functions of a
4D universe. In the final graphs we show that our particular brane-bulk structure results in a very
weak interaction between the two fields, but what would a different structure tell us? For example,
the fifth dimension could have been made very short in length, or very long. Also, the two fields
involved in the interaction can be altered. This thesis only involves similar physics to that involved
in brane cosmology, as the field propagating the bulk in that picture is a graviton. The graviton
of brane cosmology is a massless spin 2 boson, while both fields in my own simulation are massive
scalar(spin 0) bosons. However, the bulk is used to explain why gravity is such a weak force, and
from what we have seen here, the field on the bulk is indeed very weak, in that it does not effect
the field on the brane very much at all. The brane can be said to be strongly curved, resulting in
the extra fifth dimension being very short [2] (Remember the analogy between the extra dimension
and a hose pipe in section 1.1.1). With this in mind, further work could be done to reduce the fifth
dimension in my simulations. This would not present much difficulty, though the co-ordinate system
we devised in section 2.5 would have to be revised.

Given that those experiments must be left to further study, an overview of the progression of
physics throughout the project can help us to reach a more conclusive interpretation of the final
results. The most helpful way to look at what is going on behind the maths and the plots might be
to use the fact that the energy of a quantum mechanical system obeys the equation of the harmonic
oscillator (For an example, see Peskin and Schroeder[4], section 2.3, pg 19 onwards). To see the flow
of energy across the field, we can view the energy at each point on our lattice as being attached to
the energy of it’s neighbours by a spring, which is a good example of the harmonic oscillator.

Let’s start with the basic correlation function. Every correlation function generated by my
programs showed exponential fall off with increased displacement. In one dimension (which generated
figure 4.1), each point would have a spring to it’s left and one to it’s right. Now, to cause a signal
to travel along the springs, we would alter the energy at one point, which would effect the springs
to either side of it, and these would effect the neighbouring points, which in turn would effect their
own neighbouring points, and the signal would bounce back and forth on springs. Thus we have
propagation across the field, with the springs passing on energy, and the further away from the origin
of the signal, the more likely it is that the signal will die out. When we include the fact that every
point has it’s own kinetic energy, the interfering signals will complicate the likelihood of propagation
further.

Now let’s examine figure 4.2. We see that with increased mass, the signal travels a smaller
distance. We should remind ourselves that we are dealing with random energies here. The energies
at each point could happen to be aligned in such a way that the signal would pass a very large
distance (in the way a slinky can propagate a stairway for example), but the probability of this is
very low. Now, the mass effects the field in the same way that the weight of a ball held by two
springs effects the tension of the springs. The heavier the ball, the less slack the springs are. Thus,
the springs respond less easily to the signal with increased mass, and so the signal will die out more
quickly on average. The analogy with spring tension can also be seen in the distribution plot, figure

34

4.4. We can clearly see that the energies of each point are being pulled more tightly together as
mass increases, as will happen if they are attached by springs of higher tension.

The trend of figure 4.7, showing increased fall off with higher dimensions, can be described in
the same way. Extending our idea of a line of points attached by springs, we can envisage the
two dimensional scenario as a square mesh of springs (though in my simulations we have imposed
periodic boundary conditions). At each point there is now a spring attached to the left, the right,
above and below. Any movement of the energy at a particular point is therefore constrained by the
movement along four instead of two springs, and so propagation is made more difficult, hence the
resulting trend.

The next advancement was to simulate interacting fields. In this situation, the strength of the
interaction was determined by the term gφ2ψ2. The coupling constant, g, acts in the same way as
mass did in our previous examples. Mass is still present in this scenario, but now we have another
set of points attached by springs to the existing set. The tension on these springs is given by the
coupling constant. The higher the coupling constant, the more rigid the spring is, and the more rigid
the spring is the more easily one field moves the other. Thus, in one dimension, since there are only
two springs joining any point to points on the same field, the coupling on the spring attaching the
same point to the other field has a larger affect than it would in four dimensions. In this case, the
energy at a given point is affected by eight springs on it’s own field, and still by just one from the
other field. If the coupling constant is high, much of the energy of one field will propagate into the
other, rather than across itself, and so we see a reduction in the strength of the correlation function
for higher couplings (figures 4.12 and 4.13).

Another study could be made on the effect of a more massive field on a less massive one, and
vice-versa, but again, there is only so much one can cover in a project this size.

This analogy with springs brings us to the final conclusion. In the brane-bulk structure, we
wanted to see how propagation along the four dimensional field is affected by the five dimensional
field. Imagining the brane as a four dimensional mesh of points and springs and the bulk as a five
dimensional mesh is difficult to picture. It is easier to reduce the problem to a one dimensional
string of springs and points along the brane, and a square mesh of points in the bulk. Now imagine
that each point along one line of the square mesh is attached by a single spring to an equivalent
point along the line representing the brane. Kinetic energy occurs in the form of movement along
the springs, which effects the points. Now, the springs oscillate in just one dimension along the
brane, but movement along the equivalent line in the bulk will escape into two dimensions. Since
every point in the square mesh has it’s own random energy, these points will exert extrinsic tension
on the line of points attached to the brane. This reduces slack in this line, and so the line along
the bulk will have less strength to move than the line along the brane. If the brane had no kinetic
energy of it’s own, this should mean that it’s correlation function would be affected greatly. This is
an aspect that one could easily test using the programs we have built. However, we investigated the
case where the brane does have its own kinetic energy. Since the energy passes along one dimension
only (in our mini version), oscillations on the brane are much stronger than on the bulk, where the
energy given by the coupling springs will leak out onto the mesh. The same effect should occur
in four dimensions, and this explains why the brane is not affected by the bulk (though if we had
measured the correlation function on the bulk, it should have been greatly affected by the brane!).

If the mesh was smaller, so that there was less random noise from the points on the bulk, we
might have seen a more powerful interaction. This is obviously a matter for further study. On the
computing end of things, there was an optimisation to the parallel method suggested at the end
of chapter 3 that could also be investigated further. Another idea that occurred to me was the
possibility of encoding a partly distributed, partly shared memory process. The advantage in this is
that in my program there is only communication across the borders of each processors section of the
lattice. If the borders could be stored and updated on shared memory, while the rest of a section
was on the processors memory, the speed of accessing the border points could be increased. It is
unlikely that two processors would want the same piece of memory at the same time if we seed the
random number generator to different values on different processors. I am unaware if this sort of
system has ever been implemented however, or of the problems facing it’s implementation.

35

Appendix A

Derivations of Formulae

A.1 Free Field Equation

L =
1

2
φ̇2 −

1

2
(∇φ)

2
−

1

2
m2φ2

Euler-Lagrange equation (See [4] pp 15-16):

∂µ

(

∂L

∂(∂µφ)

)

−
∂L

∂φ
= 0

⇒ ∂µ

(

1

2
2φ̇−

1

2
2∇φ

)

−

(

−
1

2
2m2φ

)

= 0

⇒ φ̈−∇2φ+m2φ = 0

(

2 +M2
)

φ(x) = 0 (A.1)

A.2 One Dimensional Correlation Function

< φ(x)φ(y) >=

∫ ∞

−∞

dk

(2π)

eik(x−y)

k2 +m2

Let:

f(z) =
eiz(x−y)

z2 +m2
g(z) =

1

z2 +m2

g(z)→ 0 as |z| → ∞
eiz(x−y) is singular for imaginary z → −∞ but not for imaginary z > 0.
|eiz(x−y)| ≤ 1 for imaginary z < 0.

1

m2 + k2
=

1

z + im
.

1

z − im

There are simple poles at z = ±im but only z = im lies inside contour.

⇒ residue = {(z − im)

[

eiz(x−y)

z + im
.

1

z − im

]

}z=im

=
ei.im(x−y)

im+ im
=
e−m(x−y)

2im

36

∮

c

f(z) dz = 2πi
∑

(residues)

=

∫ ∞

−∞
g(k)eik(x−y) dk

= 2πi
eim(x−y)

2im
=

π

m
e−m(x−y)

⇒

< φ(x)φ(y) >=

∫ ∞

−∞

dk

2π

eik(x−y)

k2 +m2
=

1

2m
e−m(x−y) (A.2)

37

Appendix B

Normal Gaussian Distribution

In order to compare field distributions, a probability distribution graph is constructed for each field.
To create such a graph, we pick a number of uniform intervals that together span most of the area
of the graph. These intervals are called bins, because when a value in the sample falls inside an
interval, it is as though it is stored in that bin. The graph is then produced based on how many
values fell into each bin. Thus, probability distribution of my sample field depend on the number
of bins and the width of each bin. The consequence of this is that in order to compare different
distributions in an analysis, all graphs must be standardised as a normal distribution. A normal
distribution is one where the area under the graph is equal to one.

A distribution based on an action involving derivatives is difficult to predict, so we first test our
program on a simple field distribution. The free field distribution will always be Gaussian, so we
take the simplest Gaussian,

∫

ex
2/2 dx , and compare it to a field distributed according to the action,

S = φ2/2. This action is the one we use for our free field, except that now dφ = 0 and m = 1.
Figure B.1 plots the distributions attained for 104, 105 and 106 lattice field points against the

Gaussian, which is barely visible. Note that as more points are involved, each bin holds a higher
number. Figure B.2 shows that the figure for each bin is also dependent on the number of bins.
Using 105 points, we have plotted the bins as boxes. The lower graph uses 200 bins while the higher
uses 20. By dividing the number of bins by 10, the height of the bins increases tenfold. Note that
the 200 dots which represent 106 lattice points matches almost exactly with the center of each of the
20 bins. This makes perfect sense, as a wider interval can hold more values, and a larger number of
lattice points results in a higher density of values in each interval.

Figure B.3 shows the graphs for 104, 105 and 106 lattice points overlapping with the standard
Gaussian. Each are represented by 200 bin points. Intuitively from B.2 ew know to divide by
the total number of lattice points and by the bin width, in order to achieve normalization.
Mathematically, we work it out as follows:

Let x = the signed magnitude of the field. Then for a normalised graph we have
∫ +∞
−∞ P (x) dx = 1

but our graph is made up of bins. Let w be the width of a bin. Let Ai be the bin value (the number
of lattice points which fall into that bin). Then the probability of a point falling into a bin is
Pi = Ai/(total number of lattice points).

lim
w→dx

nbins
∑

i=0

Pi(w) =

∫ +∞

−∞
P (x) dx (B.1)

Now w represents a range of points whereas dx represents just one. To find the average probability
in an range of w, we simply divide by w, bin width. This has the effect of reducing w to dx for the
average value of x in a particular bin.

Noting that more values fall into a wider bin, and that the error in calculating my bin point is
then averaged over a greater number of values, it is better to decrease the number of bins for sparser
lattices. However, more bins leads to a more continuous graph, so we prefer to increase their number
for denser lattices. Figures B.4,B.5,B.6 and B.7 use 40, 50, 60 and 200 bins respectively in order to
achieve this balance. Note that they are much neater than figure B.3.

38

Figure B.1: unnormalised for
various lattice sizes

Figure B.2: unnormalised for
various bins and latticess

Figure B.3: normalised for
various lattice sizes

Figure B.4: normalised for 104 lattice points Figure B.5: normalised for 105 lattice points

Figure B.6: normalised for 106 lattice points Figure B.7: normalised for 3× 107 points

39

Legend: Figures B.1 and B.3: pink - standard normal, blue-104, green-105, red-106 points
Figure B.2: green boxes-200 bins 105 points, red boxes and red dots-20 bins 105 points, green dots-
200 bins 106 points
Figures B.4 to B.7: green line - standard normal, red dots - lattice

40

Bibliography

[1] J.M Overduin and P.S. Wesson, Kaluza Klein Gravity

[2] E.Papantonopoulos, Brane Cosmology

[3] Jean Zinn-Justin, Quantum Field Theory and critical phenomena, section 2.1, p. 20

[4] Peskin and Schroeder, An Introduction to Quantum Field Theory, chapter 9

[5] Heinz J. Rothe, Lattice Gauge Theories - An Introduction

41

